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Summary

Normal equations have a nice geometric interpretation but their formal
derivation requires some mathematical knowledge, such as differential
calculus or generalized inverse. We present a simple algebraic method
based on the equivalence of certain systems of linear equations. This
equivalence may be interesting in itself.
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1. Introduction

Normal equations take their origin from Gauss (1857) and Legendre
(1806). They refer to the standard Gauss-Markov model y = Xβ + e,where
y is the column of observations, β is the column of unknown parameters,
X is a known matrix, and e is an unobservable random column with zero
expectation and the identity dispersion matrix. The Least Squares principle
is to find β0, which minimizes the residual ‖ Xβ − y ‖2 over all β. For the
history and the possible approaches to the problem we refer to Herr (1980)
and deLaubenfels (2006).
The literature on the subject reveals three different approaches based

respectively on:
• geometry (cf. Fisher (1915), Kruskal (1961, 1968)),
• differential calculus (cf. Scheffé (1959), Rao (1973)),
• generalized inverse matrices (cf. Rao and Mitra (1971), Bapat (2000)).
As in Rao (1973, pp. 222-223) the necessary condition for the extre-

mum, obtained by setting the first derivatives equal to zero, needs to be
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supplemented by further (algebraic or analytic) consideration. In this situ-
ation a complete formal algebraic way is still being sought. The first step
in this direction was taken by Hamilton (1933).
In this work we express the well-known geometric ideas in an algebraic

form. Our key tool consists in showing the equivalence of certain systems
of linear equations. It throws more light on the algebraic nature of the
problem and may be interesting in itself. The whole of our considerations
are subject to only moderate prerequisites.

2. Preliminaries

For any matrix A of dimension n× p define the sets

R(A) = {x ∈ Rn : x = Ay for some y ∈ Rp} (i.e. the range of A)

and

N (A) = {y ∈ Rp : Ay = 0} (i.e. the kernel of A).

We note that

xTy = 0 for all x ∈ R(A) and y ∈ N (AT ).

It is clear that the rangeR(A) constitutes an r-dimensional linear space
in Rn spanned by the columns of A, where r =rank(A), while N (AT )
constitutes an (n− r)-dimensional space of all vectors being orthogonal to
any vector in R(A) with respect to the usual inner product (x,y) = xTy.
Thus any vector x ∈ Rn may be presented in the form

x = x1 + x2, where x1 ∈ R(A), x2 ∈ N (AT ) are orthogonal.

Since ATAx = 0 if and only if xTATAx = 0, and hence Ax = 0, we get
N (AAT ) = N (AT ).
Denote by P = PA the linear operator from Rn onto R(A) defined by

Px =

{
x, if x ∈ R(A)
0, if x ∈ N (AT ) (1)

(i.e. the orthogonal projector onto R(A)). It follows from definition (1) that
PP = P. The following lemma will be a key tool in our further considera-
tions.
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Lemma 1. For any matrix A and for any vector b ∈ R(A) the following
are equivalent:
(i) Ax = b,
(ii) ATAx = ATb.

Proof. (i)=⇒(ii) is evident (without any condition on b).
(ii)=⇒(i). By the assumption b ∈ R(A), we get b = Ac for some c. Thus
(ii) reduces toATAx = ATAc and its general solution is x = c+ x0, where
x0 ∈ N (ATA) = N (A). Therefore x is a solution of (i). �

Remark 1. The assumption b ∈ R(A) in Lemma 1 is essential. To see
this let us set

A =

 1 00 1
1 0

 and b =
 10
-1

 .

Then ATA =

[
2 0
0 1

]
and ATb =

[
0
0

]
. Thus (ii) has a solution

x =
[
0, 0

]T
, while (i) is inconsistent.

3. Main result

For any matrix A of dimension n × p and for any vector b ∈ Rn
consider the linear equation

Ax = b. (2)

The equation (2) may be consistent (if b ∈ R(A)), or inconsistent (other-
wise). In the second case we are seeking such x that the residual vector
b−Ax is as small as possible.

Definition 1. Any vector x̂ ∈ Rp is said to be the Least Squares Solution
(LSS) of (2) if

(b−Ax̂)T (b−Ax̂) ¬ (b−Ax)T (b−Ax) for any x ∈ Rp. (3)

The following theorem shows that this definition is not empty and re-
duces the LSS of an inconsistent equation (2) to the ordinary solution of a
consistent one.
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Theorem 1. (a) The equation (2) has at least one Least Squares Solution.
(b) Vector x ∈ RP is a LSS of (2) if and only if

ATAx = ATb (4)

(c) The equation (4) is equivalent to

Ax = Pb (5)

where P is the orthogonal projector onto R(A) defined by (1).

Remark 2. In the statistical literature the equation (4) is called the nor-
mal equations.

Proof. By properties of the projector P we get

(b−Ax)T (b−Ax) = [Pb+ (I−P)b−Ax]T [Pb+ (I−P)b−Ax]
= (Pb−Ax)T (Pb−Ax) + [(I−P)b]T [(I−P)b]
= (Pb−Ax)T (Pb−Ax) + bT (I−P)b
 bT (I−P)b

with equality if and only if (5) holds. Moreover, by definition of P, the
equation (5) is consistent, and by Lemma 1 it is equivalent to (4). �

4. Application in linear regression

A model of linear regression with one explanatory variable may be pre-
sented in the form

y =µ1n + αz+ e,

where y = (y1, ..., yn)T is the observation vector, 1n means the column of
n ones, z = (z1, ..., zn)T is the vector of the observed explanatory variable,
and e = (e1, ..., en)T is the vector of experimental errors (with the standard
assumptions).
By setting in (4) A = [1n, z] and b = y we get

ATA =

[
n

∑n
i=1 zi∑n

i=1 zi
∑n
i=1 z

2
i

]
and

ATb =

[ ∑n
i=1 yi∑n
i=1 ziyi

]
.
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Consequently the normal equations (4) with x =(µ, α)T reduce to[
n

∑n
i=1 zi∑n

i=1 zi
∑n
i=1 z

2
i

] [
µ
α

]
=

[ ∑n
i=1 yi∑n
i=1 ziyi

]
.

Assuming that r(A) = 2 we get

(ATA)−1 =
1

n
∑
z2i − (

∑
zi)2

[ ∑n
i=1 z

2
i −

∑n
i=1 zi

−
∑n
i=1 zi n

]
.

This leads to the Least Squares estimators

α̂ =
n
∑
ziyi −

∑
zi
∑
yi

n
∑
z2i − (

∑
zi)2

and

µ̂ =
∑
yi
n
− α̂
∑
zi
n
.
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